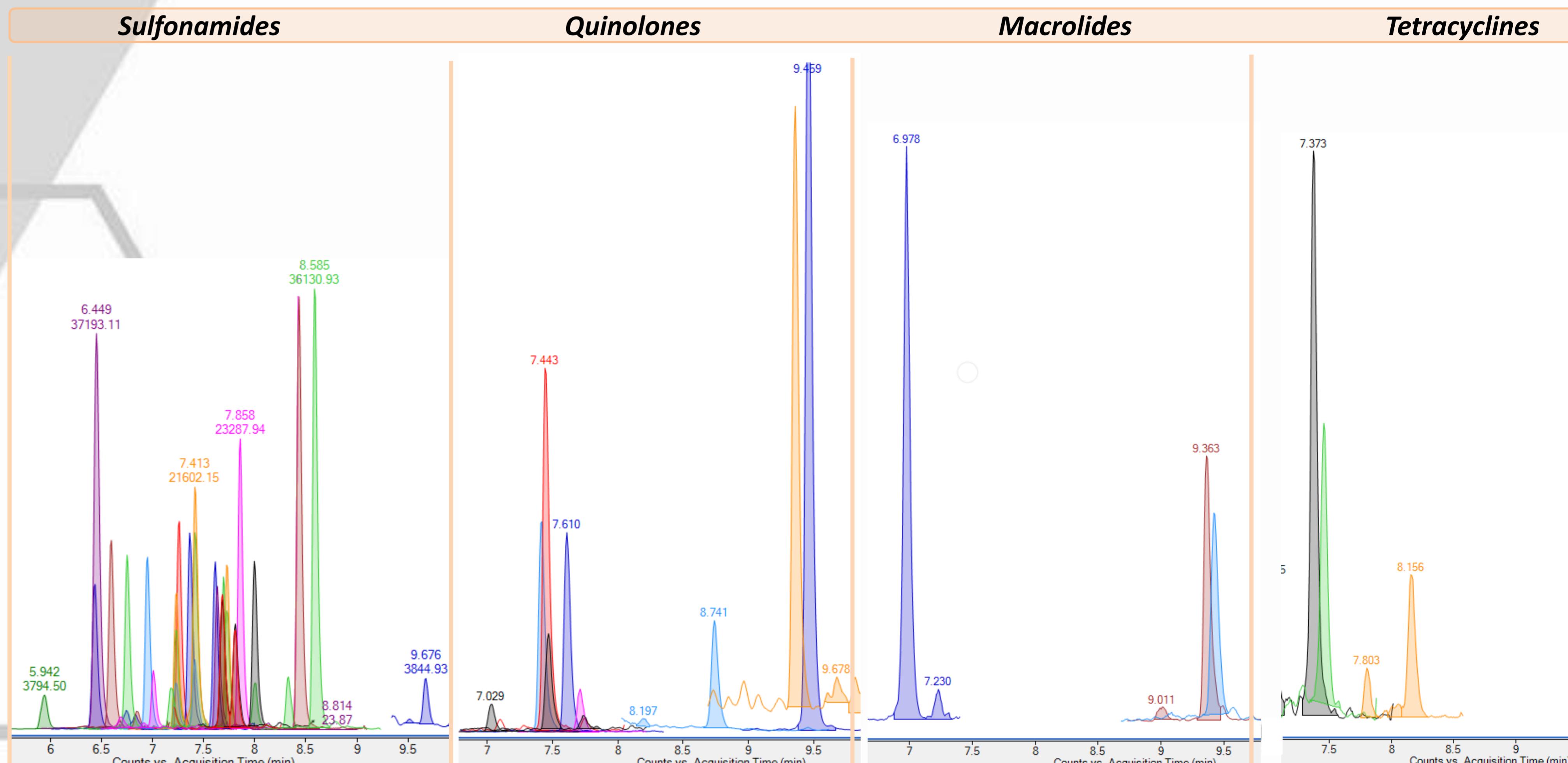
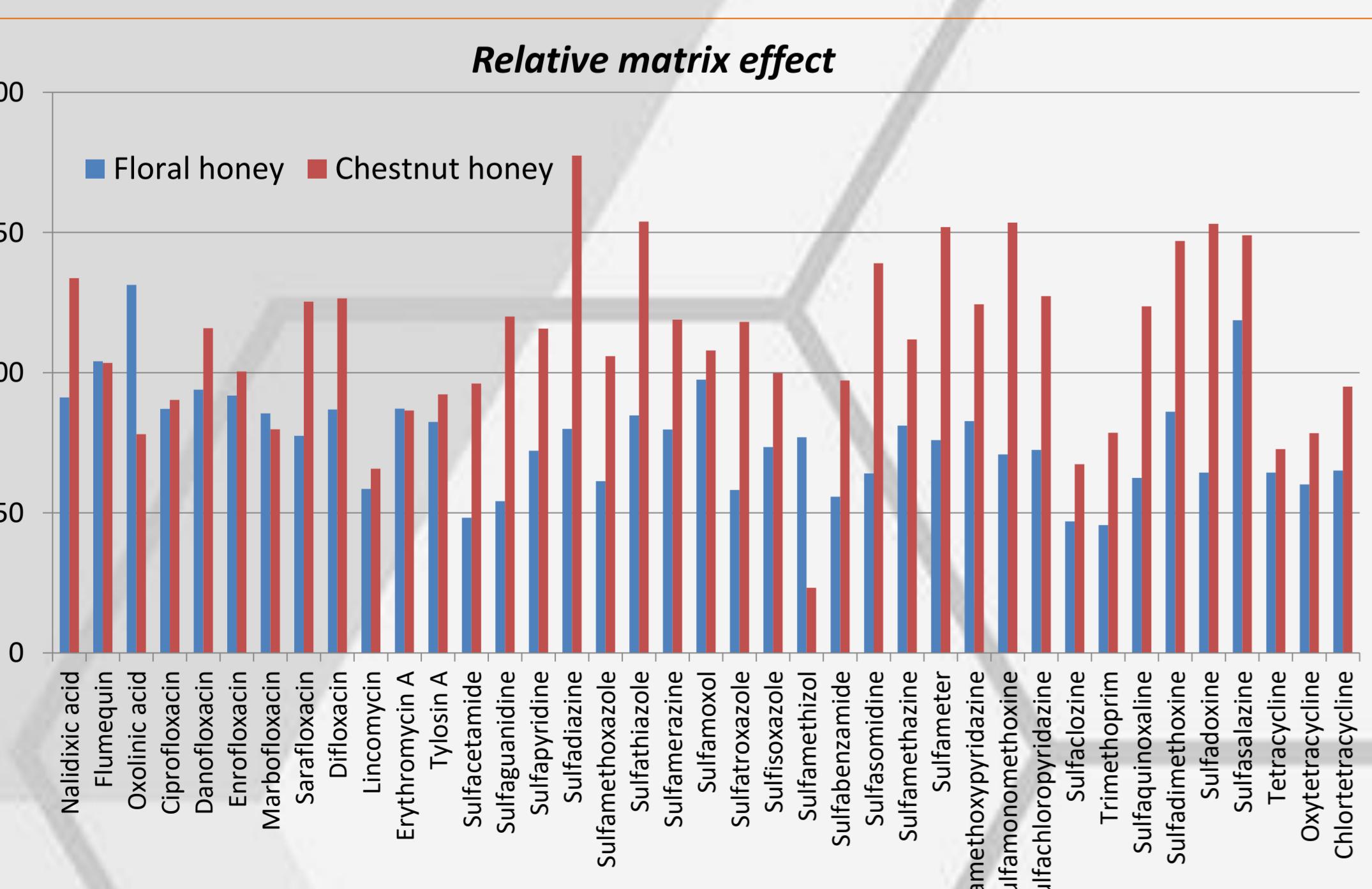

DETERMINATION OF QUINOLONES, MACROLIDES, SULFONAMIDES AND TETRACYCLINES IN HONEY QUECHERS SAMPLE PREPARATION AND UHPLC-MS/MS ANALYSIS

Ivana Varenina*. Nina Bilandžić, Ines Varga, Božica Solomun Kolanović, Đurđica Božić Luburić


Monitoring the health of the beehive and timely prevention of any possible infection with various bacteria, mould, viruses or parasites is exceptionally important in beekeeping. Antibiotics may be found in honey originating from the environment and resulting from improper beekeeping practices. Enabling the detection of antibiotic residues in honey and suppressing the development of antibiotic resistance, require the development of a sensitive multi-class method for the determination of antibiotics. For the purpose of analysing honey, a screening and confirmatory method for the determination of 36 antibiotics was developed. The QUENCHERS procedure and ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was selected to achieve high sensitivity and selectivity. Validation according to the new Commission Implementing Regulation (EU) 2021/808 included following performance characteristics: selectivity, trueness, precision, decision limit ($CC\alpha$), detection capability ($CC\beta$) and relative matrix effect. The method was validated in the measurement range from 1 to 20 µg/kg, where maximum trueness and acceptable coefficients of variation were achieved. For unauthorized pharmacologically active substances, the $CC\alpha$ was determined, ranging from 0.16 µg/kg for sulfaquinoxaline to 3.67 µg/kg for difloxacin. The high matrix influence of floral and chestnut honey indicated the need for quantitative analysis by using the matrix calibration curve.

QUECHERS Sample preparation



UHPLC-MS/MS chromatography

Validation CIR (EU) 2021/808

According to Commission Implementing Regulation (EU) 2021/808 all validation parameters complied with the set requirements. Validation parameters were calculated using validation software for comprehensive in-house validation InterVal Plus® and it consists of the following experiments: linearity, specificity/selectivity, repeatability and inter-laboratory reproducibility (Rel sR), decision limit ($CC\alpha$) and detection capability ($CC\beta$). Relative matrix effect was tested using matrix extracts fortified after extraction and compared with a standard solution. Significant matrix effects were noticed during the analysis of different species of honey samples fortified at $CC\alpha$ concentration.

UHPLC-MS/MS PARAMETERS

- UHPLC Agilent Technology 1290 Infinity II, Triple Quad LC/MS 6470
- Chromatography: Flow 0,4 ml/min, thermostated at 40°C, Acquity UPLC HSS T3 column (1.8 µm, 2.1x150 mm)
- Autosampler: Injection volume 10 µl, thermostated at 10°C
- MS/MS parameters- positive ionisation mode: Gas temperature 150°, Gas flow 11 l/min, Nebulizer 35 psi, Sheath gas temperature 300°C, Sheath gas flow 6 l/min, Capillary voltage 4000V, Nozzle voltage 500

Time (min)	MFA (0.1% Formic acid)	MFB (MeOH)
0	100	0
3	100	0
10	5	95
13	5	95
13.5	100	0
17	100	0

Analyte	Calibration interval µg/kg	CCα µg/kg	CCβ µg/kg	Recovery [%] at CCα	Rel sR [%] at CCα	Analyte	Calibration interval µg/kg	CCα µg/kg	CCβ µg/kg	Recovery [%] at CCα	Rel sR [%] at CCα
Fluoroquinolones											
CIPRO	1.0 - 20	1.34	1.86	96.6	9.9	SBZ	0.1 - 20	0.22	0.3	100.4	12.4
DAN	1.0 - 20	1.12	1.57	98.7	7.7	SAC	0.1 - 20	0.18	0.25	103.4	10.9
DIFLOX	1.0 - 20	3.67	5.6	101.2	16.4	SCP	0.1 - 20	0.23	0.32	100.8	12.6
ENR	1.0 - 20	2.53	3.73	104.1	12.3	SDZ	0.1 - 20	0.13	0.16	100.6	5.8
FLU	1.0 - 20	2.08	3.06	102.5	11.4	SDM	0.1 - 20	0.13	0.16	99.6	5.7
MARB	1.0 - 20	2.16	3.12	99.7	12.3	SDX	0.1 - 20	0.17	0.22	99.3	9.4
NALA	0.1 - 20	0.29	0.43	100.1	15.1	SGN	0.1 - 20	0.7	1.2	99.9	13.1
OXOA	0.75 - 20	1.15	1.6	102.7	7.8	SMR	0.1 - 20	0.27	0.39	100.2	14.3
SAR	0.25 - 20	0.61	1.11	100.2	18.4	SMZ	0.1 - 20	0.23	0.32	100.9	12.5
Macrolides and lincosamides											
TYL	0.1 - 20	0.54	0.76	101	13	SMZOL	0.1 - 20	0.18	0.24	99.5	10.6
ERY	0.1 - 20	0.31	0.46	99.8	15.3	SMP	0.1 - 20	0.2	0.28	100.4	11.6
LINC	1.0 - 20	1.83	2.53	100.5	18.5	SMX	0.25 - 20	0.45	0.58	100.6	9.6
Tetracyclines											
TTC	0.25 - 20	0.51	0.7	101.9	11.9	SMM	0.1 - 20	0.25	0.36	100.2	13.5
CLTTC	0.5 - 20	1.04	1.58	101.2	13.6	SMOX	0.1 - 20	0.48	0.76	100	17.8
OXYTTC	0.5 - 20	0.83	1.18	98.6	10.3	SPYR	0.1 - 20	0.23	0.33	100.4	12.9
Sulfonamides											
STZ	0.1 - 20	0.16	0.21	100.7	8.6	SQX	0.1 - 20	0.17	0.22	100.4	9.1
SSL	1.0 - 20	3.26	5.07	94.2	18.7	STROX	0.1 - 20	0.23	0.31	99.6	12.8
SSOM	0.25 - 20	0.3	0.34	98.2	4.1	TMP	0.1 - 20	0.38	0.58	100.1	16.5

Conclusion

The proposed screening and confirmation method based on the UHPLC-MS/MS technique was successfully developed and validated for screening and confirmation of quinolones, macrolides, lincosamides, sulphonamides, and tetracyclines. The QUECHERS extraction procedure allows for fast and specific extraction of the selected analytes, ensuring high sensitivity of the method and ability to determine residues in the range from 0.1 to 30 µg/kg. In the routine use of the methodology, the results of the analyses shall be considered non-compliant when equal to or above the decision limit for confirmation (C₀).